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Orientational relaxation in Brownian rotors with frustrated interactions on a square lattice
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We present simulation results on the equilibrium relaxation of Brownian planar rotors based on a uniformly
frustratedXY model on a square lattice. The rotational relaxation exhibits typical dynamic features of fragile
supercooled liquids including the two-step relaxation. We observe a dynamic crossover from the high-
temperature regime with Arrhenius behavior to the low-temperature regime with temperature-dependent acti-
vation energy. A consistent picture for the observed slow dynamics can be given in terms of the caging effect
and thermal activation across potential barriers in the energy lands¢8i€63-651X99)12608-4

PACS numbe(s): 64.60.Cn, 05.45-a, 64.70.Pf

[. INTRODUCTION sive, and late time diffusive regimes, which is argued to be
consistent with the picture of the cage effect and long-time

The past decade or so has witnessed significant advancastivated dynamics for the motion of the rotors. It is shown
in our understanding of the underlying mechanism for thethat there exist two dynamically distinct regimes: a high-
slow dynamics of supercooled liquids approaching the glastemperature regime where the dynamics is governed by a
transition[1]. The development of mode-coupling theory of temperature-independent activation energy, and a low-
supercooled liquid§2] and extensive experiments and com- temperature regime, in which the activation energy increases
puter simulationg3] have played crucial roles in such ad- With decreasing temperature, which is interpreted as arising
vances. Some efforts have also been devoted to devisirf§em complex energy landscapfss, 15 probed by the sys-
model systemgeven though somewhat artificidid] which ~ tem in the low-temperature regime.
show glassy behavior similar to that of supercooled liquids.

One line of research along this direction is to fifidttice) II. DYNAMIC MODEL AND SIMULATION METHOD

model systems with no quenched disorder but some intrinsic ] ] ] ]

frustration built into the model, which may exhibit glassy e consider the following Langevin dynamics for a col-
relaxationg5—8). lection of planar rotors on a square lattice,

One can imagine that there may exist a common micro-
scopic mechanism which underlies the observed similarities
in the relaxations of model systems and real supercooled
liquids. This possibility is made more plausible by the uni-
versal scaling property observed in the dielectric susceptibiliyhere| is the moment of inertiaw;(t)= 6:(t) the angular
ties of a variety of supercooled liquidS] and some plastic ye|ocity of the rotor at sité, y the damping constant, and
(glassy crystal[10-132. In this work, we address the ques- ,, (t) the thermal noise. Equatidl) describes the Brownian
tion of this possible common mechanism by investigating thenotion of rotors subject to the interaction potential energy

equilibrium orientational relaxation of planar Brownian ro- V({6}). The thermal noisey;(t) is given by a Gaussian ran-
tors whose interaction is prescribed by that of uniformly 4o variable

frustratedXY (UFXY) models with dense frustration, which

NV{6})

lwi(t) + yoi(t) = — 0.0

+ (1), 1

is a prime example of non-randomly-frustrated syst¢h (m(1)=0,
characterized by complex degeneracy of ground states and '
many metastable states. ) ,
Y (07 (1)) =29T 8 8(t-1"), @

While a recent simulatiof8] by the present authors deals
with the relaxation of the vortex charge density for a purely

dissipative dynamics, here we examine directly the orienta\—Nhere the Boltzmann constakg is set equal to unity. The

tional relaxation with finite rotational inertia, which offers variance of the noise in Eq¢2) ensures that the system at

more transparent views on the origin of the observed Slov&emperatureT evolves toward the equilibrium state whose

relaxation. Also, due to the one-dimensional nature of thé)roperties are governed by the Boltzmann _dis’Fribution
phase of the planar rotors, it is convenient to probe the prop@Xp(_ E({6}.{w})/T) where the energ({6}.{w}) is given

_ 2
erties of the angular motions of the rotors of the system. weY E(L0} {0}) =1 20i/2+ V({,a})'
find that, by including phenomenological rotational inertia in Here we chose the potential energ{{ 6}) as the energy

the dynamic equation for the rotors, the orientational corre©f the two-dimensional UFXY model on a square lattice,
lation exhibits a two-step relaxation, which is analogous toVhich takes the forni16]

the (fash B8 and a relaxations of supercooled liquids. Mean

square angular displaceme(SAD) exhibits three-stage V({ohH)=—J3> cod6,— 6 —A;) 3)
behavior, i.e., the early time ballistic, intermediate subdiffu- & IR
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where J is the coupling constant andj) denotes nearest- from a spin glass system where both intrinsic disorder and
neighbor pairs. The bond anglés; satisfy the constraint frustration are considered to be esser{t].
With the potential energy3), the Langevin equation is
explicitly given by
‘Zp A =2, (4)
i,je
loi(t) +ywi()==32 sin(6;—6;=Aj)+mi(t). (5)
where the sum is oveii (j) belonging to the unit plaquette :
causing competing interactioriustration) between the ro- e integrate Eq(5) in time, starting from random initial
tors. Heref is called the frustration parameter of the system.congitions{ ¢;(0)} and{w;(0)} using an Euler algorithm on
_ A convenient choice foA; is the Landau gauge which is 5 square lattice of linear sizé=34. In our simulations, we
given by A;=0 for every horizontal bond andA;  ysedi=1.5, y=1,J=1, andf=13/34, which is a Fibonacci
=*2xfx; for the vertical bond directed u_p_warﬁuOW”‘ approximant tof =1—g. Periodic boundary conditions are
ward with x; being thex coordinate of the site. It can be  employed for both spatial directions. The results were aver-
readily checked that this choice of the bond angles obeys thgyeq over 156 1000 different random initial configurations,
condition(4). Due to the invariance of the Hamiltonidh)  gepending on the quenching temperature. As for the integra-
underf—f+1 andf— —f, we need to consider the values jon time step, we usedt=0.05 in the dimensionless unit of
of f only over the rangg0,1/2]. A physical realization of this  {ime. No essential difference could be found in the results

model can be found in the two-dimensional square array ofyhen compared with those obtained by usitg- 0.01.
Josephson junctions under a uniform perpendicular magnetic

field. In this situation, the bond angl; is identified with
the line integral of the vector potentidl of the transverse

magnetic field:A;; = (2m/®) [IA-dI, where®, is the flux In order to probe the orientational relaxation of the sys-
quantumd®,=hc/2e per unit plaquette. With this identifica- tem, we first computed the on-site autocorrelation function
tion the strength of magnetic fieB is given byBa?=f®d,,  for the planar spins
wherea is the lattice constant.

The UFXY model can be mappdd7] onto that of a 1 N2
lattice Coulomb gas with charges of magnitude—(f), n Cr(t)=— > cog ai(o)—ai(t)]>, (6)
=0,=1,%2,...,where charges correspond to phase vorti- N“\i=1
ces with suitably defined vorticity around the plaquettes. The
lowest excitation consists of charges with magnitudesf1 Where the bracke: - -) in Eq. (6) represents an average over
and —f, respectively. The charge neutrality condition thendifferent random initial configurations. In this work we focus
implies that the number density of positive charges is equaPhly on the lowest-order correlation even though one may
to f. For the case off=0, the well-known Kosterlitz- @lso measure the higher-order correlations, as was done in
Thouless transitiofil8] occurs via vortex-antivortex unbind- "ecent molecular-dynamics simulatioj26-27. _
ing at a finite temperature. Except for this case of the unfrus- Shown in Fig. 1 is the on-site autocorrelation function
trated XY model, the equilibrium nature and associatedCr(t). The relaxation continuously slows down as the tem-
phase transitions of these systems are not very well undeRerature is lowered. In order to characterize the slowing
stood even for the next simplest casefef?, the so-called dewn of the relaxation, one can define a characteristic relax-
full frustratedX Y model[19]. For example, the ground-state &tion time 7r(T) as Cr(7g) =1/e. The temperature depen-
configurations for the case of genefatp/q (p andq are  dence ofrg(T) is shown in the inset of Fig. 1. It exhibits an
relative primeg are not knowr{20,21] except for some low- Arrhenius behavior at high temperatures, while at low tem-
order rational values of such asf=1, 1, 2, 2 etc., where Peratures 7<0.20) it shows a non-Arrhenius behavior,
staircase types of ground-state configurations are known an#hich can be well fitted by the Vogel-Tamman-Fulcher form
|ytlca”y [22’2]1 TR(T): To eXF[DTo/(T_To)] with '7'02992, TO:OOS, and

As q becomes largdthe limit of irrational frustration ~ D=3.58[28]. Similar non-Arrhenius behavior was observed
due to the complexity of the degeneracy of the system ani the vorticity relaxation as we(i8].
long equilibration time, it is quite a difficult task to analyze ~ An interesting feature of the rotational relaxation is that it
the nature of the low-temperature phase of the system. An@xhibits a two-step relaxation, a very fast relaxatiop to
in spite of the recent claim by Denniston and Td@g] that  t=3 for T=0.13J, the lowest temperature probedind a
there exists a first-order transition nefg=0.13J, in the slow relaxation following_the fast relaxation. The earliest
case off=1—g [g being the golden-mean ratig= (/5 part of the fast relaxation is expected to be well described by
—1)/2=0.618] it is fair to say that the low-temperature the free rotation of the rotorkw;(t)+ yw;(t)=0. For the
phase is not completely understood yet. On the other handime range wherd<I, the inertial term is dominant and
since it is clear that many metastable states are possible dienced;(t) — 6;(0)=w;(0)t. It is then easy to show that the
to the dense frustration, one can expect that Brownian dyrelaxation is given byCg(t)=1—(T/21)t? using the equipar-
namics(1) with the potential energ§3) may generate a slow tition theorem(w?)="T/I.
relaxation, where trapping of the configurations in deep The long-time part of the slow relaxation can be well
metastable minima and thermal activation across the poterfitted by the stretched exponential formCg(t)
tial barriers play a crucial role. Note that there is no intrinsic= Cy exd —C,(t/7r)?] (C;=1+ In C, due to the definition of
disorder in the present system, which distinguishes itselfg), shown in Fig. 2. We find that the exponghvaries with

Ill. RESULTS AND DISCUSSIONS
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FIG. 1. The rotational autocorrelation functiofx(t) versus timet (in dimensionless units wity=1 andJ=1) for temperatures
T/J=0.5, 0.4, 0.3, 0.25, 0.2, 0.17, 0.15, 0.14, 0.13. Inset: An Arrhenius plot for the characteristic relaxation time de@iteg &)
=1/e, where the solid line is a Vogel-Tamman-Fulcher fit at the low-temperature regieeethe text

temperature: it decreases as the temperature is lowered, Esnperature superposition of the relaxation function is sys-
shown below in the inset of Fig. 3. It is interesting to notetematically violated in the latéslow) part of the relaxation,
that at low temperaturesT&0.2) the short-time part of the especially at low temperatures. This breakdown of the scal-
slow relaxation shows a deviation from its stretched expoing is consistent with the fact that the two expondmtsd 8
nential fit and the time region for this deviation tends tovary with temperature.

extend over longer time regions with lowering temperature. It would be interesting to examine the response function
We have fitted this region with a power-law decay known ascorresponding to the orientational correlation function
the von-Schweider relaxatid29] Cr(t)=C,— Cst®, where  Cg(t). The response function in the frequenay) (domain

the exponenb also varies with temperatuisee the inset of can be defined aévia the fluctuation dissipation theorgm
Fig. 3. We now examine the scaling behavior of the rota-x”(v) =2mwv[jdtcos(2mit)Cx(t). Figure 4 showsy”(v)
tional relaxation. Shown in Fig. 3 i€g(t) versus the res- versusv in a semilogarithmic plot. We see that there exist
caled timet/ 7x(T). Obviously the earliest part of the relax- two peaks, the low-frequenay peak and the high-frequency
ation does not obey the scaling since a faster time Stlade  peak(microscopic peak As the temperature is lowered, the
inverse of the inertia which is temperature independent o peak moves to lower frequency, indicating the slowing
involved in this regime. We also observe that the time-down of the reorientational relaxation. At the same time, the

FIG. 2. Stretched exponential
fit (dashed lingsto the long time
part of the autocorrelation func-
tions (for the same temperatures
as in Fig. 3. Time t is measured
in the same dimensionless units as
in Fig. 1.

) ——
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maximum value ofy”(v), which is analogous to the Debye- Cg(t) can be well fitted by a stretched exponential function,
Waller factor, continuously decreases, and thespectrum the regime of its validityfor the stretched exponential foym
becomes broadened as the temperature is lowered. We alsolimited to the late-time regime only and does not extend to
note that as the temperature is lowered, a minimum of thé¢he intermediate time regime where so-called von-
spectrum is slowly developed. All these features in the freSchweidler relaxatioh33] (with different exponenb) better
guency spectrum of the orientational relaxation are qualitafits the relaxation function. In the frequency domain this will
tively quite similar to the recent broad band dielectric sus-correspond to two-power-law behavior.

ceptibility measurement of supercooled liquif®,30,31. In order to investigate the self-diffusion of the rotors, we
According to the recent dielectric susceptibility data, the measured the mean squared angular displace(MSAD)
spectrum of supercooled liquids consists of two power law

regimes in the right-hand side of tlacpeak. The first power- 1/ N

law relaxation clearly corresponds to the stretched exponen- ([A6(1)]>)= N< E [6:(1)— ei(0)12> , (7)

tial relaxation in time domain. In addition to this, another =1

power law regime is observed in the high-frequency side of

the a spectrum. It is quite interesting that similar power-law where the phase angt(t) is unbounded. Figure 5 shows a
relaxation is also observed in the high-frequency part of théog-log plot for the MSAD([ A 4(t)]?) versus time. For all
magnetic susceptibility of a spin glass syst8]. Although  temperature ranges probed, we see ¢hat(t)]%)~t? in the

we cannot better resolve the high-frequency part of dhe early time regime, which may be called the ballistic regime.
spectrum of the present orientational relaxation due to thét is expected that each rotor makes a free rotation in this
bad statistics of the spectrum at low temperatures, we believédme regime. Hence the MSAD is then given by
that our orientational relaxation spectrum also exhibits simi{[ A 6(t)]%)=(T/1)t? in the ballistic regime. This regime cor-
lar two-power-law regimes in the right-hand side of the responds to the earliest part of the relaxatiop(t)=1
peak. The reason is that, even though the long-time part of (T/21)t?. For high temperatures this ballistic regime di-

T b | T T
0.4 1
0.3 sy
"= H : "
"t FIG. 4. Dynamic response functiog”(v)
i 8 corresponding to the rotational relaxation versus
— 024 . ° frequencyv for temperaturesT=0.5, 0.4, 0.3,
Z ° 0.25, 0.2, 0.17, 0.15. In addition to the micro-
= . o scopic peak, one can clearly see the development
- of the B minimum (as the temperature is low-
0.1 °© ered, a decrease of the height of thepeak, and
1o a broadening of the width of the peak.
0.0
LI | LR | LR | LR | TorrTTT
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FIG. 5. Mean squared angular
displacement{[A 6(t)]?) versus
timet (in dimensionless unijsfor
the same temperatures as in Fig. 1.
At the lowest temperature probed
(T=0.137), the subdiffusive re-
gime extends over more than two
decades.
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rectly crosses over to the diffusive regime whereever, the local rotors can execute full rotations via activated
([A6(t)]?)~t. But as the temperature is lowered, in the in-tunneling through the potential barriers, showing occasional
termediate time regime a subdiffusive regime characterizedbrupt rotational motions, as shown in Fig. 6. Similar jump
by ([A6(t)]%)~t% with ¢<1 (for example,#=0.3 for T motions have been observed in MD simulations of soft-
=0.13)) starts to appear and extends over more than twephere mixture§34], binary Lennard-Jonef35], and the
decades of time at the lowest temperature prob&d ( colloidal glass[36]. Also, neighboring rotors can execute
=0.13]). The subdiffusive regime sets in at the same timecollective rotations, thereby slowly rearranging the whole
t~2 for all temperatures. In this regime the rotational mo-phase configurations. This stage will correspond to the slow
tion is significantly hindered. This can be directly seen inpart of Cg(t). This entire time evolution of the self-rotational
Fig. 6, which shows the angular displacement®;(t) motion is qualtitatively the same as that observed in MD
=@ (t)—6(0) at some representative sitesTat0.15). We  simulations of the orientational relaxation of molecular su-
clearly see from this figure that for all these phase angles thpercooled liquidg27].

rotational motion looks almost frozen for more than a few The rotational diffusion constamg(T) can be obtained
thousand time units. This strongly indicates that the systenby the slope of the MSAD versusin the long-time limit

is stuck in a particular configuration among many possiblevhere MSAD exhibits diffusive behavior([ A 6(t)]?)
metastable states. The rotor then executes a local vibrationa 2Dg(T)t. As shown in Fig. 7, at high temperatures the
motion only, which corresponds to the caging in the dynam+otational diffusion constant exhibits an Arrhenius behavior,
ics of real supercooled liquids. At longer time scales, how-which is well fitted by Dg(T)=Dgexp(—AE/T) with Dy

T=0.157J
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1 - Ty g 06 . FIG. 7. An Arrhenius plot for the rotational
e 1.5 . & 7] diffusion constantDg(T). We can see a cross-
‘; 0.4 ] over from the high-temperature regime with
O 2.0+ g 03 - Arrhenius behavior to the low-temperature re-
s ' 402 03 04 05 gime with non-Arrhenius behavior. The inset
°o° 2.5 ¢ T . shows an anomalous deviation from the Stokes-
- ] . Einstein relation by plotting the product
3.0 . Dr(T) 7r(T) versusT, where we can find that, at
. 4 . low temperaures, the coefficient of angular diffu-
354 . sion is smaller than that which would be expected
- ° ] from the standard Stokes-Einstein relation.
-4.0 T T T T T T T T T T
2 3 4 6 7 8

5
T

=0.68 and the temperature-independent activation energyx(T)~Dg(T) ! up to T=0.20). The data points below
AE=0.87J. As the temperature is lowered, howeveig(T) 0.20] tend to deviate from this proportionality, indicating
shows a strong deviation from the Arrhenius behavior. Thisnore rapid decreasgather than enhancemerdf the rota-
behavior implies that the long-time dynamics in the high-tional diffusion constant. However, it is not clear to us
temperature regime is governed by activation barriers whosehether this anomalous behavior is a genuine feature of the
average height does not depend on temperature. In the loypresent model or not.
temperature regime, the rotors explore deeper valleys in the We have also measured the normalized angular velocity
potential energy landscapes whose depth increases as thetocorrelation functiofAVCF)
temperature decreases, giving rise to the non-Arrhenius be-
havior of the relaxation timg37]. N2

It was observed in some experiments of supercooled lig- <2 wi(o)wi(t)>
uids [38] that while both translational and rotational diffu- =t
sion constants are proportional to the inverse of viscosity at Cav(t)= < 2 > : (8)

(0)

high temperatures, the decrease of the translational diffusion
constant is less dramatic than the inverse of viscosity at low
temperatures. The rotational diffusion constant, on the other
hand, is still proportional to the inverse of viscosity at low In the absence of the interaction between rot@s,(t) can
temperatures down to the glass transition. This relative enbe easily obtained a8 \(t) = exp(—t/l). With interaction,
hancement of the translational self-diffusion is also revealeés shown in Fig. 8, the AVCF shows a strongly damped
in recent simulations of supercooled liquit9,40 and the  oscillatory motion. As the temperature is lowered, the ampli-
lattice model systemp41,42. Here we compared the tem- tude of oscillation becomes enhanced. This behavior strongly
perature dependences of the two time scal&@g(T) and indicates that the rotors execute angular rattlings in “cages”
7r(T). Shown in the inset of Fig. 7 is a plot f@rg(T) rr(T) [43].

versusT. Since the produdDg(T) 7r(T) in the plot is mea- For purely Gaussian distribution of the angular displace-
sured to be nearly contant down T6=0.20J, the two time  ments, it is easy to show that the rotational correlation func-
scales are observed to be proportional to each other, i.etipn Cg(t) can be expressed in terms of the mean square

1.0
----------- T=0.50
0871 ——T=0.13
06 exp(-yt/I)
14 FIG. 8. The angular velocity autocorrelation
044 % functionsCpy(t) for T=0.5Q0 and T=0.13) (t
9 ] ."‘: in dimensionless unifsFor comparison, the dot-
< 02- ted line represents exponential relaxation corre-
N 1 b o _ sponding to the situation where the potentials are
O oo NS neglected. One can see a strong rotational cage
0 E effect indicated by the oscillating tail & 4y (t).
-0.4
i 1 i I i 1 i I i I ' I i I !
0 2 4 6 8 10 12 14 16
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ivd relation functions versus time(in
0 1 dimensionless unijsfor tempera-
& 04- tures T/J=0.5, 0.3, 0.17, 0.14,
v and 0.13 together with Gaussian
= 7 approximation  results (dotted
Y 0.2 - lines). Systematic deviations are
S seen at a late time stage.
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angular displacement  ([A6(t)]%) as C(RG)(t) where the factog comes from the one-dimensional nature
=exp(—([A6(t)]%)/2). Shown in Fig. 9 is the comparison for the motion of the rotors. As shown in Fig. 1@(t)
of the rotational correlation functioBg(t) and its Gaussian €xhibits three time regimes of distinct behavior, as in the
approximationC(RG)(t). We find thatCr(t) exhibits a good MSAD. _It almost vamshes_ in the _balllst|_c regime and then
agreement with the Gaussian approximation in the early timéapidly increases toward its maximum in the intermediate
regime, whereas it shows a considerable deviation from théme regime, and finally decreases again in the long time
Gaussian approximation in the late time regime. In order tdegime. This temporal behavior is qualitatively the same as
characterize the non-Gaussian nature of the distribution dhat observed in some MD simulatiof46].
displacements, the non-Gaussian parameter has often beenAs the temperature is lowered, the maximum value of
used in simulations of supercooled liquidg!—47. Here we  a,(t) rapidly increases, and at the same time the time regime
measure the same quantity for the angular displacementaherea,(t) increases is extended, indicating the strong non-
which is defined as Gaussian nature of the rotational motion in this regime. This
regime corresponds to the subdiffusive regime in the time
dependence of the MSAD shown in Fig. 5. It is expected that

1 [AO(D)]Y ) a,(t) eventually decays to zero since, for pure diffusion, the

ay(t)== , (99  Gaussian distribution is expected for the angular displace-
3([A6(1)]?)? ment.
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\% 0.6 1 Fp eter versus timé (in dimension-
o] - ’4‘"’ less unit for the same tempera-
0.4 - y tures as in Fig. 1.
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IV. SUMMARY teresting to quantitatively characterize the metastable states
resent in the system such as finding the local minima and
ensities of metastable states. In this regard, it would also be
very instructive to examine how the dynamic features change
as the value of the frustration parametés varied. We can

also consider the Newtonian dynamics version of our system
and compare with Langevin dynamif48,49, which may

We have shown that the relaxation of phenomenologicag
Brownian rotors based on the densely frustra¥xed model
Hamiltonian exhibits a slow dynamics which is remarkably
similar to the relaxation of fragile supercooled liquids. We
find that there exists a dynamic crossover from the high

temperature regime, where the dynamics can be described ovide further insight into these questions. We will under-

temperature-mdgpendent activation energy, and_ the Io_ take further study along these directions in the near future.
temperature regime, where non-Arrhenius behavior sets in,
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